How Drug Abuse Affects the Brain and What We Can Do About It

Brain Awareness Week March 17, 2022 Dr. Matthew Eckard Dr. Thalia MacMillan SUNY Empire State College

Understanding Drug Addiction as a Biological Process

Brain Awareness Week March 17, 2022 Dr. Matthew Eckard SUNY Empire State College

Neurological

Social

DRUG ADDICTION

Medical

Economic

Estimated Cost to Society of Substance Abuse and Addiction

Alcohol: \$249 billion/year Tobacco: \$300 billion/year Prescription Opioids: \$78.5 billion/year Illegal Drugs: \$193 billion/year

Total: \$820.5 billion/year

What is Drug Addiction?

A Brain Disease

Characterized by:

SUNY EMPIRE

- Compulsive drug-seeking behavior
- Continued use of drugs despite negative consequences
- Persistent changes in brain structure and function

Volkow et al. (1993) Synapse

The old perspective

The new perspective

Drugs act as chemical "imposters" in the brain

Why Do People Use Drugs?

To Feel Good

Euphoric sensation

Pleasure

Social experience

"Light" Side

To Feel Normal Reduce anxiety Reduce feelings of hopelessness Lift out of depression

"Dark" Side

Brain reward system

- Dopamine pathways mediate reward in the brain
- Mesolimbic pathway
 - Basal ganglia
 - VTA -> Nucleus Accumbens
- Drugs, food, sex, etc. increase dopamine in mesolimbic pathway

VTA = ventral tegmental area NAcc = nucleus accumbens

Drugs increase dopamine release from the VTA

Drugs increase dopamine release from the VTA

SUNY EMPIRE

Motivation in drug addiction

Motivation in drug addiction

Positive reinforcement

• Adding something "pleasant" that increases behavior frequency

Negative reinforcement

- Removing something "unpleasant" that increases behavior frequency
- Motivation shifts from positive to negative reinforcement

The Addiction Cycle

Binge Intoxication

Patterns of heavy use

Withdrawal / Negative Affect

Dysphoria and stress arise when drug is not present

Preoccupation / Anticipation

Directing all attention toward getting more drug

Effects of Stress on Drug Use

- Stressful situations can cause people to relapse
 - Stress-induced reinstatement
- Occurs across all drug classes
- Stressed animals will seek drugs much more intensely than non-stressed animals

Effects of Stress on Drug Use

• Stressed animals will seek drugs much more intensely than non-stressed animals

Dynamic interplay between stress and drug use

Dynamic interplay between stress and drug use

Amygdala, CRF, and stress

Corticotropin-Releasing Factor

 Amygdala has highest levels of stress hormones in the brain

• CRF

- BST allows amygdala to communicate with rest of brain
- Prolonged stress & drug use INCREASE stress hormones in the amygdala

CeA – Central Nucleus of Amygdala BST – Bed Nucleus of Stria Terminalis

Amygdala's role in drug withdrawal

CRF and mental illness

- Increased CRF observed in schizophrenia and depression
- 2-fold higher in depression relative to control levels
- CRF also increased in people who attempt suicide

Amygdala CRF and alcohol seeking

Funk et al. (2006) J. Neuro.

Drug addiction isn't just about pleasure

- Drug use may start as a rewarding process
- Quickly shifts to using drugs to manage negative mood symptoms
- Contributes to high relapse rates across drugs (50%)

Addiction is maintained through negative adaptations

Addiction is a brain disease

- The brain changes in very specific ways
- Drug use modifies and amplifies the brain's stress systems
- Other changes include:
 - Metabolic activity in the brain
 - Receptor availability
 - Gene expression
 - Responsiveness to environmental cues

Addiction treatment must go beyond the chemistry

Understanding addiction science can help reduce social stigma and increase treatment access and treatment success

Thank You for Joining Us This Week!

Our team will compile answers for any questions not addressed during the session. Find those answers on our Brain Awareness webpage in the following days: https://www.esc.edu/brain-awareness-week/

For questions about the Brain Awareness Week at SUNY Empire, email <u>brainawareness@esc.edu</u>.

